

 SuSe: Summary Selection for Regular Expression
Subsequence Aggregation over Streams

purtzesc@hu-berlin.de

Problem Setting

SuSe Architecture

Take AwaySome Results

… such that:

⬤ at each evaluation point, the number

of subsequence matches is maximized

to minimize aggregation loss

Given … : … select a substream ...

⬤ derive count rules; state counter updates

(Some) Evaluation Results

⬤

 =
 A

B
Ɣ

+
C

StateSummary: ⬤ count matches per state

 global state counters➜

 to quantify the current quality➜

 (0,0,0,0) A1 (0,1,0,0) B➜ 2 (0,1,1,0) B➜ 3 (0,1,3,0) C➜ 4 (0,1,3,3)➜

(0,0,1,0) B3 (0,0,2,0) C➜ 4 (0,0,2,2)➜

Global State Counters

Local State Counters B2

Steven Purtzel and Matthias Weidlich

Humboldt-Universität zu Berlin

1

3 Active Time
Window:

Two Main Components:
1) summary selector & 2) summary (substream & StateSummary)

4
Selection Strategy

 ⬤ stream s = <e1,e2,..>

 ⬤ RegEx query (Ɣ, τ, A)
 ➜ = AB*CƔ
 ➜ τ = 10 time units
 ➜ A = COUNT

 ⬤ summary size n

⬤ goal: keep elements in substream that maximize RegEx matches

 ⬤ benefit(e) = present benefit(e) + expected benefit(e)

 present: #complete matches ➜ e participates in

 ➜ expected: #complete matches e *will* participate in

 partial matches including ➜ e with future match potential

⬤ idea: simulate how e's (active) partial matches evolve with future arrivals

 for the remaining time span where ➜ e stays within the window, e.g., Δt=2

 t=0: (0, 5, 10, ➜ 15); t=1: (0, 7.75, 13, 15.75); t=2: (0, 10, 16.5, 17)

 accumulate expected match completions via counters on final states➜

⬤ count matches per element per state

 (active) local state counters➜

 to quantify an element’s current (and➜

 future) match participation

2

 ➜ consists of the selected substream and StateSummary

 StateSummary holds aggregated information on (partial) matches ➜

 within the substream and for each of its selected elements

 maintain state consistency during element insertions and removals➜

 ➜ queries the StateSummary to decide element insertions/replacements

⬤ substream segment within the

 current (sliding) time window

 contains (active) partial ➜

 matches with match potential

 used to initialize (active)➜

 local state counters

 ➜ crucial for state consistency

 and estimating future matches

E
ff
ec

ti
ve

n
es

s

E
ff
ic

ie
n
cy

R
ea

l-
w

or
ld

D
at

as
et

 ⬤ Random & FIFO baselines

 ➜

 ⬤ FlinkCEP, CORE, REmatch

 ⬤ NASDAQ ~ 450k elements

⬤

Q
0
 =

 A
(B

|G
)*

A

 Q
1
 =

 A
*
G

(A
|B

)*
G

*
A

⬤

⬤ SuSe: architecture for efficient RegEx subsequence

summarization over streams

 ⬤ leverages StateSummary to maintain query-specific,

aggregated match summaries

 ⬤ enables substream selection that minimizes

aggregation loss by maximizing subsequence matches

 ⬤ SuSe is orders of magnitude faster than leading

RegEx and CEP engines, while producing richer

substream aggregates than baselines

 ⬤ (unknown)

 evaluation time
 points

summary

summary selector

	Folie 1

